Big Data Processing Frameworks

Introduction In the era of big data, datasets grow exponentially in volume, velocity, and variety, necessitating specialized frameworks for efficient processing. Big data processing frameworks enable scalable handling of massive datasets across distributed systems, surpassing the capabilities of traditional databases. This chapter explores batch and real-time processing paradigms, key frameworks like Apache Hadoop, Apache Spark, Apache Kafka, and Apache Flink, and the role of Extract, Transform, Load (ETL) processes in data pipelines. The purpose is to teach scalable data handling, covering theoretical foundations, practical implementations, and architectures. Through code snippets, diagrams, and case studies, readers will learn to select and apply these frameworks for real-world applications, addressing challenges like fault tolerance, data locality, and parallelism. Overview: Batch vs. Real-Time Processing Big data processing is divided into batch and real-time (stream) proc...