Posts

Showing posts with the label anonymization

Safeguarding Sensitive Healthcare Data: Advanced Anonymization Strategies in Big Data Environments

Image
  Introduction In the era of big data, the exponential growth of information generated from various sources has revolutionized industries, particularly healthcare. Electronic health records (EHRs), wearable devices, genomic data, and telemedicine platforms produce vast datasets that enable advanced analytics, personalized medicine, and improved patient outcomes. However, this abundance of data comes with significant privacy risks. Sensitive information, such as medical histories, genetic profiles, and personal identifiers, can be exploited if not adequately protected, leading to identity theft, discrimination, or unauthorized surveillance. Anonymization techniques serve as a cornerstone for safeguarding privacy in big data environments. These methods aim to remove or obscure personally identifiable information (PII) while preserving the utility of the data for analysis. This chapter delves into the principles, methods, and applications of anonymization in large-scale systems, ...