Uncovering Financial Fraud: Harnessing Big Data and Machine Learning for Transaction Security

Introduction Fraud in financial transactions poses a significant challenge to businesses, financial institutions, and consumers worldwide. With the rise of digital transactions, fraudulent activities have become more sophisticated, necessitating advanced methods for detection and prevention. Big Data analytics, combined with machine learning, offers a powerful approach to identifying fraudulent patterns in vast datasets. This chapter explores how Big Data technologies and machine learning algorithms can be leveraged to detect fraud in financial transactions, providing a comprehensive overview of techniques, challenges, and future directions. The Nature of Financial Fraud Financial fraud encompasses a wide range of illicit activities, including credit card fraud, money laundering, identity theft, and insider trading. These activities result in billions of dollars in losses annually, with the Association of Certified Fraud Examiners estimating global losses due to fraud at over $4 tri...